Low-Complexity Constant Multiplication Based on Trigonometric Identities with Applications to FFTs

نویسندگان

  • Fahad Qureshi
  • Oscar Gustafsson
چکیده

SUMMARY In this work we consider optimized twiddle factor multipliers based on shift-and-add-multiplication. We propose a low-complexity structure for twiddle factors with a resolution of 32 points. Furthermore, we propose a slightly modified version of a previously reported multiplier for a resolution of 16 points with lower round-off noise. For completeness we also include results on optimal coefficients for eight points resolution. We perform finite word length analysis for both coefficients and round-off errors and derive optimized coefficients with a minimum complexity for varying requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs

Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...

متن کامل

Design and Simulation of a Modified 32-bit ROM-based Direct Digital Frequency Synthesizer on FPGA

This paper presents a modified 32-bit ROM-based Direct Digital Frequency Synthesizer (DDFS). Maximum output frequency of the DDFS is limited by the structure of the accumulator used in the DDFS architecture. The hierarchical pipeline accumulator (HPA) presented in this paper has less propagation delay time rather than the conventional structures. Therefore, it results in both higher maximum ope...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

Course MA2C02, Hilary Term 2011 Section 7: Trigonometric Identities, Complex Exponentials and Periodic Sequences

7 Trigonometric Identities, Complex Exponentials and Periodic Sequences 26 7.1 Basic Trigonometric Identities . . . . . . . . . . . . . . . . . . 26 7.2 Basic Trigonometric Integrals . . . . . . . . . . . . . . . . . . 28 7.3 Basic Properties of Complex Numbers . . . . . . . . . . . . . 29 7.4 Complex Numbers and Trigonometrical Identities . . . . . . . 31 7.5 The Exponential of a Complex Numbe...

متن کامل

Low Complexity and High speed in Leading DCD ERLS Algorithm

Adaptive algorithms lead to adjust the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor when there are a lot of changes in the system. Vedic mathematics is used to implement the multiplier and the divider in the VFF equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 94-A  شماره 

صفحات  -

تاریخ انتشار 2011